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Background and Aims

Background

在行为神经科学与动物模型研究中，对小鼠社交行为进行自动化、精细化识别是理解神经回路功能、疾病模型与药物干预机制的重要基础。然而，

现有行为分析流程仍高度依赖人工标注，不仅成本高、主观性强，而且在实验条件或个体差异发生变化时，标注一致性与模型泛化能力均受到严重

限制。MABe（Mouse Action Behavior estimation）任务正是针对这一瓶颈提出的标准化挑战，其核心目标是将多小鼠社交行为识别问题表述

为一个基于骨架关键点序列的时序学习问题。不同于直接处理原始视频，MABe 使用姿态估计方法提取多只小鼠的身体关键点轨迹作为输入，要

求模型在仅依赖骨架信息的条件下，识别细粒度的个体行为与社交互动行为，其中许多类别具有明确的施动者—受动者（agent–target）结构。

Challenges

高维交互性：社交行为并非单体姿态的简单函数，而高度依赖个体之间的相对位置、

朝向、接触关系及其随时间变化的拓扑结构，因此模型必须显式刻画跨个体的空间关系。

长时序依赖：诸如追逐、嗅探等行为通常跨越数百帧，要求模型在高频、长序列输

入下有效整合远期时间信息。

极端类别不平衡：在 70 余种行为类别中，大量帧属于背景或非社交状态，而具有

生物学意义的社交行为样本极为稀缺，这对模型训练与评估提出了严峻挑战。

Aims

针对上述问题，我们提出了一种端到端的混合时空建模框架。该框架通过显式的拓

扑与关系建模刻画多小鼠之间的交互结构，结合高效的时间建模机制以捕捉长距离时序依赖，并在训练过程中引入针对类别不平衡的策略，以提升

对稀有社交行为的识别能力。整体目标是在保持计算效率的同时，实现对多主体社交行为的稳定、可扩展识别。
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Related works

传统序列建模（Traditional Sequence Modeling）

早期的行为识别方法常使用 RNN、LSTM 等循环神经网络对

骨架坐标序列建模，但这些方法通常将每帧关键点简单拼接成

向量输入序列模型，忽略了骨架本身丰富的空间结构与个体间

的交互关系，使得空间信息难以被有效利用。

图神经网络与注意力机制（GNN & Attention）

为解决结构性弱建模的问题，图神经网络（GNN）被广泛用

于骨架数据的空间关系建模，通过定义关节节点及其连边来捕

获非欧几里得几何结构。在时序动作识别领域，引入注意力机

制的 Transformer 结构能够灵活建模长距离依赖与跨时间上下

文，从人类动作识别扩展到动物行为建模中表现出良好潜力。

MABe/CalMS21 等 Benchmark 及相关方法

MABe Challenge 源于 CalMS21 数据集与 Multi-Agent 

Behavior Benchmark，该基准由多个实验室采集的大规模小

鼠社交行为轨迹构成，是行为识别研究的重要推动力量。基于

这些数据集的顶会论文表明，在动物行为识别中不仅需要处理

关键点时序，还须考虑交互代理之间的关系结构，并能在不同

实验设置下保持泛化。相关研究提出了包括自监督表示学习、

多任务学习及跨数据集迁移学习的方法，以评估和提升对复杂

行为的判别性能。

最新进展

近期的基准（例如 MABe22）进一步扩展了多物种、多任务

行为分析框架，并对比了多种视频与轨迹表示学习方法，指出

从人类动作识别直接迁移的模型在动物行为建模上仍存在性能

差异。

Model and Methods

针对 MABe 的 HHSTF Network

我们提出的 HHSTF（Hybrid Hierarchical Spatio-

Temporal Framework）Network 面向 MABe 的多小鼠骨

架序列识别任务，整体流程为：输入特征构建 → 单帧空间

拓扑编码 → 长时序骨干建模 → 分类与损失设计（不平衡友

好）→ 推理与后处理。模型目标是在保持计算效率的同时，

对“多主体交互 + 长跨度行为 + 稀有类别”三类困难同时有针

对性处理。

评估指标（Evaluation Metric）

本研究采用分实验室宏平均 F-beta 分数，实验中取 β=1。

先对实验室内所有类别的 F-beta 取平均（Macro-average），

再对所有实验室的得分取算术平均，得到最终 Score。该指

标对类别不平衡具有鲁棒性，且能有效评估模型在不同实验

环境下的泛化能力。

输入处理（Input Representation）

为减少场景与绝对位置干扰，所有关键点坐标均转换为以小

鼠为中心的相对坐标系。在此基础上，引入速度、加速度及

三阶差分（Jerk）等运动学特征，以增强对快速突变动作与

细微震颤的刻画能力。最终输入以固定长度时间窗口（最长 

512 帧）组织。

空间拓扑编码（Spatial Graph Encoding）

在单帧层面，我们采用基于图的空间编码器建模骨架结构与

个体间交互关系。节点对应小鼠身体关键点，边同时包含：

• 体内连接（解剖结构先验），

• 体间连接（跨小鼠的接近与互动关系）。

通过图注意力机制，自适应聚合关键点及交互信息，得到结

构感知的帧级空间表示。

长时序建模（Temporal Backbone）

为捕捉跨数百帧的社交行为动态，模型使用高效 

Transformer 变体对时间维进行全局建模。同时引入卷积模

块增强局部时序特征，有助于识别动作的起始与终止边界，

从而兼顾长程依赖与短时动态。

训练与不平衡处理（Loss & Training Strategy）

针对 MABe 中严重的类别不平衡问题，训练阶段采用动态加

权损失策略，提高稀有社交行为与困难样本的权重，抑制背

景帧主导效应，从而提升对低频行为的识别性能。

Results

在实现相对复杂的模型之前，我们先使用基础空间编

码与课上所学的基础模型进行了baseline测试：

通过引入更复杂的空间编码与特征信息，对不同行为

分别训练一个XGBoost，性能得到了显著提升：

进一步的，采用我们提出的架构：

图一：小鼠骨架关键点一例

图二：HHSTF网络结构

Lab-averaged 

Macro F1-score

LSTM 0.21

CNN 0.20

XGBoost 0.17

XGBoost 0.42

HHSTF 0.50
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