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Figure 1: Overview of the Ego-GAT-SqueezeNet framework. The pipeline begins with Input Generation, featuring egocentric
alignment, action-rich sampling, and skeleton unification. Features are processed through a Spatial Encoder (GAT) to model
joint-level topology and a Temporal Backbone (Squeezeformer) to capture long-range dependencies. A Lab Context Adapter
concurrently extracts environment and subject-specific embeddings, which are integrated via FiLM (Feature-wise Linear
Modulation). The model is optimized using Dataset-aware Focal Loss and refined through a Post-Processing suite including
dynamic threshold grid search and gap filling.

Abstract

Quantifying social behavior in laboratory animals is
fundamental to neuroscience but remains hindered by man-
ual annotation’s subjectivity. The Multi-Agent Behavior
(MABe) challenge addresses this by benchmarking auto-
mated recognition from pose data, yet faces challenges
like extreme class imbalance, complex topology, and cross-
laboratory domain shifts.

In this work, we propose Ego-GAT-SqueezeNet, a uni-
fied framework for multi-agent behavior understanding.
First, we introduce an egocentric alignment strategy to in-

variantize agent features against translation and rotation.
Second, we employ a Graph Attention Network (GAT) to ex-
plicitly model the dynamic spatial topology. Crucially, we
integrate a Squeezeformer backbone that leverages efficient
downsampling to capture long-range dependencies in high-
frequency sequences. For environmental heterogeneity, we
utilize Feature-wise Linear Modulation (FiLM) to dynami-
cally recalibrate features based on laboratory and subject
identities. Our approach achieves an F1-score of 0.7702
on the validation set, outperforming baselines by identify-
ing rare social actions across diverse experimental setups.
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1. Introduction
1.1. Background and Motivation

Quantifying animal behavior is a cornerstone of modern
neuroscience, genetics, and pharmacology. To understand
how neural circuits control social interaction or how new
drugs affect phenotype, researchers typically rely on the
precise characterization of behaviors in laboratory animals,
such as mice. While recent advances in markerless pose
estimation tools (e.g., SLEAP [9], DeepLabCut [7]) have
automated the extraction of body part coordinates, bridg-
ing the semantic gap from raw keypoint trajectories to in-
terpretable “ethograms” (behavioral catalogs) [1] remains a
significant bottleneck.

Traditionally, this task relies on manual annotation,
which is labor-intensive, unscalable, and prone to inter-rater
variability. The Multi-Agent Behavior (MABe) Challenge
[12] aims to solve this by benchmarking automated methods
that can classify fine-grained social and individual behav-
iors solely from pose tracking data. Unlike single-agent sce-
narios, multi-agent behavior understanding requires dissect-
ing complex interactions between an “Agent” mouse and a
“Target” mouse, creating a highly dynamic and structured
problem space.

1.2. Challenges

Developing a robust automated system for the MABe
task presents four fundamental challenges that standard ac-
tion recognition models struggle to address:

1. Implicit Social Topology: Social interaction is not
merely a sum of two individuals’ motions; it is defined
by their relative geometric configuration (e.g., nose-to-
tail contact). Standard Convolutional Neural Networks
(CNNs) designed for grid-like image data fail to ex-
plicitly model this irregular, graph-structured topology
of body joints and social connections.

2. Long-Term Temporal Dependencies with Redun-
dancy: Distinguishing complex behaviors like social
following from random coexistence requires analyz-
ing temporal contexts spanning dozens to hundreds of
frames. However, high-frame-rate pose data contains
significant temporal redundancy. Standard Recurrent
Neural Networks (LSTMs) [3] suffer from forgetting
issues over long sequences, while vanilla Transformers
[13] incur prohibitive quadratic computational costs
(O(N2)) when processing long windows.

3. Extreme Class Imbalance: Mice spend the vast ma-
jority of their time in low-activity states (e.g., sleeping
or huddling). Scientifically critical behaviors, such as

aggressive attacks or specific social investigations, are
rare, constituting only a small fraction of the dataset
[12]. This imbalance causes standard training objec-
tives to bias heavily toward the majority classes.

4. Cross-Laboratory Domain Shifts: The dataset com-
prises recordings from over 20 independent labora-
tories, introducing significant heterogeneity in cam-
era viewpoints, lighting conditions, and animal sizes.
A robust model must generalize across these distinct
domains without overfitting to laboratory-specific ar-
tifacts, a problem often overlooked in single-domain
benchmarks.

1.3. Our Approach: Ego-GAT-SqueezeNet

To address these challenges, we propose Ego-GAT-
SqueezeNet (Egocentric Graph Attention Temporal
Squeezeformer Network), a unified framework tailored for
efficient and interaction-aware behavior recognition.

First, to tackle the spatial variance, we introduce an Ego-
centric Alignment strategy. By canonicalizing the coordi-
nate system to the agent mouse’s perspective, we ensure our
model learns interaction features invariant to absolute room
position and rotation.

Second, we employ a Graph Attention Network (GAT)
[14] as our spatial encoder. Instead of treating joints as a flat
vector, GAT models the mouse body and social connections
as a graph, allowing the network to dynamically attend to
critical joints (e.g., the nose during sniffing) while ignoring
irrelevant ones.

Third, and most crucially, we adopt the Squeeze-
former [4] as our temporal backbone, giving our model
the “SqueezeNet” suffix. Originally designed for speech
recognition, Squeezeformer is uniquely suited for pose se-
quences: it efficiently recovers long-range dependencies us-
ing attention mechanisms while using temporal downsam-
pling (“squeezing”) to reduce the processing load of redun-
dant frames. This allows us to train on large temporal win-
dows (e.g., 64 frames) efficiently.

Fourth, to mitigate domain shifts, we incorporate a Lab
Context Adapter. This module learns explicit embeddings
for different laboratory environments and subject identities.
These context features are dynamically integrated with the
spatiotemporal representations via an attention-based fu-
sion mechanism, enabling the model to adapt its predictions
based on the specific experimental context.

1.4. Contributions

Our main contributions are summarized as follows:

• We propose Ego-GAT-SqueezeNet, a novel architec-
ture that integrates graph-based spatial modeling with
the efficient Squeezeformer backbone to capture fine-
grained social interactions. Crucially, we introduce a
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Lab Context Adapter to robustly handle domain shifts
across heterogeneous laboratory environments.

• We implement a comprehensive data strategy, includ-
ing Action-Rich Sampling, dynamic focal loss, and bi-
ological consistency checks, to effectively mitigate the
extreme class imbalance inherent in naturalistic behav-
ior datasets.

• We demonstrate through extensive experiments that
our pose-based framework achieves competitive per-
formance on the MABe benchmark, offering a scalable
solution for high-throughput behavioral phenotyping.

2. Related Work
2.1. Automated Animal Behavior Analysis

The quantification of animal behavior has undergone a
paradigm shift from manual ethograms to automated com-
puter vision pipelines. Early approaches relied on hand-
crafted features and shallow classifiers [1] to detect simple
behaviors. The advent of deep learning revolutionized this
field, primarily through markerless pose estimation tools
like DeepLabCut [7] and SLEAP [9], which provide high-
fidelity tracking of body parts.

However, obtaining keypoints is only the first step. The
MABe (Multi-Agent Behavior) challenge [12] highlighted
that mapping these trajectories to semantic categories re-
mains difficult due to the complex, multi-modal nature of
social interactions. While dataset-specific baselines exist
(e.g., CalMS21 [11]), they often struggle with the extreme
class imbalance and identity switching inherent in multi-
agent tracking data. Our work builds upon these founda-
tions but focuses specifically on the downstream classifica-
tion stage using advanced graph and temporal architectures.

2.2. Skeleton-based Action Recognition

Since our approach relies on pose data rather than
raw pixels, it aligns closely with skeleton-based action
recognition. Baseline approaches often employ simple
Multi-Layer Perceptrons (MLPs), sometimes termed Spa-
tialGNNs, which treat skeletal joints as independent feature
vectors or flatten them into a single coordinate list. While
computationally cheap, these methods ignore the structural
connectivity of the body. A major breakthrough was the
Spatial-Temporal Graph Convolutional Network (ST-GCN)
[15], which explicitly modeled the body as a graph struc-
ture.

Recent works have extended GCNs with adaptive topolo-
gies [10] to learn connections beyond physical bones. How-
ever, standard GCNs often share weights across all nodes or
rely on fixed adjacency matrices. To address the dynamic
nature of social interaction—where the ”edge” between two
mice is latent and transient—we employ Graph Attention
Networks (GAT) [14]. Unlike standard GCNs, GATs al-

low the model to assign different importance weights to
neighbors, enabling the network to focus on relevant social
contacts (e.g., nose-to-tail) while ignoring irrelevant limb
movements.

2.3. Efficient Long-Sequence Modeling

Differentiating fine-grained social behaviors (e.g., inves-
tigation vs. attack) requires capturing long-term temporal
dependencies. Prior to Transformers, architectures based
on Dilated Convolutions, such as WaveNet [8], were widely
adopted to model long sequences. By stacking layers with
exponentially increasing dilation rates, these models can ex-
pand their receptive fields linearly without the vanishing
gradient problems of RNNs. However, they lack the global
context modeling capabilities of self-attention mechanisms.

On the other hand, Transformers [13] incur quadratic
computational costs (O(N2)). The Conformer [2] success-
fully combined CNNs and Transformers to capture both lo-
cal and global dependencies. Building on this, the Squeeze-
former [4] introduced a ”temporal U-Net” structure that
downsamples (squeezes) embeddings for attention opera-
tions and upsamples them for the output. This architecture
is particularly well-suited for high-frame-rate animal pose
data, which contains significant temporal redundancy.

2.4. Context Integration and Domain Adaptation

A unique challenge in the MABe benchmark is the het-
erogeneity of data collected across over 20 independent lab-
oratories [12]. Variations in recording setups (e.g., cam-
era angle, resolution) and animal subjects introduce sig-
nificant domain shifts. While standard domain adaptation
techniques often require complex adversarial training, con-
ditional modeling has proven effective in mitigating such
variances. In this work, we propose a Lab Context Adapter
that explicitly embeds laboratory and subject identities. In-
stead of simple concatenation, we employ advanced fusion
mechanisms—specifically Gated Fusion and Attention Fu-
sion—to dynamically modulate the spatiotemporal features
with these context embeddings. This allows the model to
adaptively recalibrate its feature channels for different ex-
perimental environments.

2.5. Learning from Imbalanced Data

Real-world behavioral datasets exhibit extreme long-
tailed distributions, where informative social actions are
dwarfed by background activities. Addressing this requires
specialized optimization strategies beyond standard cross-
entropy. Focal Loss [5], originally designed for dense object
detection, dynamically down-weights easy examples (back-
ground) to focus training on hard positives. In this work,
we combine a robust Action-Rich Sampling strategy with
a dataset-aware Focal Loss to effectively mitigate the bias
toward majority classes.
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3. Methodology
3.1. Overview

Our proposed framework, Ego-GAT-SqueezeNet, is de-
signed to address the challenges of multi-agent social be-
havior understanding: high-dimensional spatial topology,
long-term temporal dependencies, and cross-domain het-
erogeneity. The pipeline consists of four integrated mod-
ules: (1) Egocentric Feature Representation, (2) Graph-
based Spatial Encoding, (3) Temporal Squeezeforming, and
(4) Context-Aware Adaptation.

3.2. Egocentric Feature Representation

To achieve invariance to translation and rotation, we
adopt an Egocentric View transformation. Given the raw
tracking data P ∈ RT×M×K×2 (where M = 2 mice, K
keypoints), we define the agent mouse’s centroid as the ori-
gin and align its body axis to the vertical Y -axis. We unify
varying skeletal definitions across laboratories into a stan-
dardized graph with |V | = 7 nodes (Nose, Ears, Neck,
Sides, Tail Base, Tail End).

To enrich the semantic representation, we construct a
high-dimensional feature vector Xt using the FeatureGen-
erator module. For each frame t, the input features include:

• Kinematics: We compute discrete derivatives to cap-
ture motion intensity: velocity vt = pt − pt−1, accel-
eration at = vt − vt−1, and jerk jt = at − at−1.

• Geometry: Pairwise Euclidean distances Dij = ∥pi−
pj∥2 and relative angles θij between all keypoints.

• Morphology: Body curvature and length dynamics
derived from the spine keypoints (Nose-Neck-Tail).

The final input X ∈ RT×din is the concatenation of these
engineered features.

3.3. Spatio-Temporal Encoding

3.3.1 Spatial Encoder: Graph Attention Network

Mice bodies and their social connections form a natural
graph structure. We employ a Graph Attention Network
(GAT) [14] to explicitly model this topology. The attention
coefficient eij between node i and neighbor j is computed
as:

eij = LeakyReLU
(
a⃗T [Wh⃗i ∥Wh⃗j ]

)
(1)

The output node features are computed as a weighted sum
followed by an ELU activation for stability:

h⃗′
i = ELU

∑
j∈Ni

αijWh⃗j

 (2)

Global Graph Pooling. To transition from the node-level
graph space to the temporal sequence space required by the

backbone, we apply Global Average Pooling across all N
body nodes at each time step t. This aggregates the struc-
tural information into a single feature vector st ∈ RD,
which serves as the input token for the temporal encoder.

3.3.2 Temporal Backbone: Squeezeformer

To efficiently process long-range dependencies in high-
frame-rate (30fps) sequences, we adopt the Squeezeformer
backbone. It incorporates a Temporal U-Net structure that
downsamples the temporal resolution by a factor of 2 for
intermediate processing and upsamples for final predic-
tion, reducing computational complexity from O(L2) to
O((L/2)2).

Each Squeezeformer block integrates a Multi-Head Self-
Attention (MHSA) module with a Feed-Forward Network
composed of Depthwise Separable Convolutions to capture
local context:

ConvFFN(x) = PtConv2(GELU(

DWConv(GELU(PtConv1(x)))))
(3)

where PtConv is a pointwise 1×1 convolution and DWConv
is a depthwise k × 1 convolution. This hybrid design cap-
tures both global dependencies (via Attention) and local
motion patterns (via Convolutions).

3.3.3 Context-Aware Feature Modulation (FiLM)

To robustly handle domain shifts across 21 laboratories, we
move beyond simple concatenation and employ a Feature-
wise Linear Modulation (FiLM) mechanism. Unlike stan-
dard cross-attention which computes pairwise similarities,
FiLM linearly modulates the statistics of the temporal fea-
tures based on the global environmental context. This acts
as a channel-wise attention mechanism, effectively telling
the model which feature channels to emphasize or suppress
for a specific laboratory setup.

Given the context embedding Ectx (derived from Lab
and Subject IDs), we employ a two-layer MLP (Linear →
LeakyReLU → Dropout → Linear) to regress the modula-
tion parameters: a scale vector γ and a shift vector β.

[γ, β] = MLPctx(Ectx) ∈ R2×D (4)

where D corresponds to the channel dimension of the
temporal features. To avoid gradient vanishing and ensure
numerical stability, we constrain the scaling factor to the
range (0, 2) using a shifted Tanh activation:

Scale = 1 + tanh(γ) (5)

The spatiotemporal features HST are then modulated via
an affine transformation followed by a residual connection:
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Hmod = Scale ⊙HST + β

Hfinal = HST + Linear(Hmod)
(6)

where ⊙ denotes element-wise multiplication (broad-
casting across time).

Initialization Strategy. A critical design choice is the
initialization of the final projection layer in MLPctx to ze-
ros. This ensures that initially γ = 0 and β = 0, result-
ing in Scale = 1 and an identity mapping. Consequently,
the model begins by learning domain-agnostic motion rep-
resentations and progressively learns to utilize context cues
to refine features, preventing early training instability.

3.4. Optimization and Post-Processing

3.4.1 Dataset-Aware Focal Loss

To mitigate extreme class imbalance, we employ a weighted
Focal Loss. We calculate class-specific weights wc based on
the inverse logarithmic frequency of each behavior in the
training set. The loss function is defined as:

L = −
C∑

c=1

wc(1− pt,c)
γ log(pt,c) (7)

where pt,c is the model’s estimated probability for class c,
and γ = 2.0 is the focusing parameter.

3.4.2 Dynamic Thresholding and Tie-Breaking

During inference, raw probabilities are refined through a
multi-stage pipeline:

1. Smoothing: We apply a median filter (window size=5)
to suppress high-frequency jitter.

2. Threshold Optimization: We perform a grid search
on the validation set to find the optimal threshold τc
for each behavior class.

3. Z-Score Tie-Breaking: For frames where multiple
mutually exclusive behaviors exceed their thresholds,
we resolve conflicts using a Z-score normalization:

zc =
pc − τc
σc + ϵ

(8)

where σc is the standard deviation of probabilities for
class c. The class with the highest zc is selected.

4. Gap Filling: Finally, we merge fragmented actions
separated by gaps shorter than 10 frames (< 0.33s)
to ensure biological consistency.

4. Experiments
4.1. Experimental Setup

Dataset. We evaluate our method on the MABe 2022
Challenge dataset [12], which consists of large-scale track-
ing data of interacting mice groups from 21 independent

laboratories. The dataset comprises 8,789 training videos
with 76 distinct behavior classes. It presents significant
challenges due to extreme class imbalance (76.8% unla-
beled frames), laboratory heterogeneity, and complex multi-
agent interactions.

Implementation Details. We implement Ego-GAT-
SqueezeNet using PyTorch on the AutoDL cloud comput-
ing platform. The training environment consists of a high-
performance node equipped with a single NVIDIA RTX
6000 GPU (96GB VRAM) and 110GB of System RAM to
facilitate efficient data caching and prefetching. To ensure
reproducibility, we use the following configuration derived
from our best-performing runs:

• Input: Temporal window size T = 128 frames (ex-
panded from 64 to capture longer dependencies), batch
size B = 2048.

• Architecture: Spatial Encoder (GAT, 3 layers, 128d),
Temporal Backbone (Squeezeformer, 8 layers, 512d,
16 heads), Fusion (FiLM/Attention, 1024d).

• Optimization: Fused AdamW optimizer [6] is em-
ployed with a learning rate of 1e−3 and weight decay
1e−4. We use a Cosine Annealing schedule over 200
epochs with early stopping.

• Loss: Dataset-aware Focal Loss [5] with γ = 2.0 and
a global positive weight scaling of 12.0.

• Data Strategy: Egocentric alignment, action-rich
sampling (bias factor 5.0), and strong feature engineer-
ing (velocity, acceleration, jerk, distances, angles).

Evaluation Metric. We report the macro-averaged F1-
score on the validation set. Formally, for each behavior
class c, the F-score is calculated based on precision (Pc)
and recall (Rc) as:

Fβ,c = (1 + β2) · Pc ·Rc

(β2 · Pc) +Rc
(9)

In our experiments, we set β = 1 to weight precision
and recall equally. The final reported metric is the un-
weighted mean across all C = 76 classes: Macro-F1 =
1
C

∑C
c=1 F1,c. This macro-averaging ensures that the per-

formance on rare social actions (minority classes) con-
tributes equally to the final score as frequent background
behaviors, preventing the evaluation from being dominated
by the majority class.

4.2. Main Results: Systematic Ablation Study

To comprehensively evaluate each component, we con-
ducted a controlled ablation study. Table B.2 summarizes
the results. Note that to isolate the impact of architectural
choices, comparisons are made against a strong baseline
configuration.

Best Configuration. As shown in Table B.2, our pro-
posed final configuration using FiLM (Feature-wise Lin-
ear Modulation) fusion yields the optimal performance
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with a peak F1-score of 0.7702. This result validates our
design choice: while simple Concatenation (0.7691) pro-
vides a strong baseline, the explicit channel-wise modula-
tion provided by FiLM allows for slightly superior adapta-
tion to laboratory contexts while maintaining better theoret-
ical interpretability.

4.3. Component-wise Impact Analysis

We further quantify the contribution of critical strategies
in Table B.1. To provide a structured analysis, we orga-
nize the components from data foundation to architectural
design and final post-processing.

• Data Processing (Dominant Factor). As shown in
Table B.1, data engineering choices are foundational.
Removing Action-Rich Sampling causes the most
severe drop (−28.7% relative to baseline), confirm-
ing that without oversampling, the model collapses
to majority-class predictions. Similarly, the Egocen-
tric View is essential (−22.7% drop) for learning
interaction-centric patterns invariant to absolute posi-
tion.

• Impact of Feature Engineering. Table B.1 high-
lights a foundational insight: the criticality of input
representation. Removing our engineered features (ve-
locity, acceleration, jerk, relative angles) and relying
solely on raw coordinates (“Basic Features”) results
in a catastrophic performance drop from 0.6556 to
0.5024 (−23.4%). This confirms that raw coordinate
streams possess a significant “semantic gap,” and ex-
plicit kinematics provide necessary inductive biases.

• Temporal Backbone (Severe Degradation). Replac-
ing Squeezeformer with alternative temporal models
causes catastrophic performance drops: Multi-Scale
CNN (−27.3%) and WaveNet (−29.9%). These re-
sults validate that Squeezeformer’s temporal down-
sampling is uniquely suited for redundant high-frame-
rate pose sequences.

• Spatial Encoder & Graph Topology. Comparing
spatial encoders, GAT (0.7691) consistently outper-
forms the MLP-based SpatialGNN (0.7674) and the
fixed-graph ST-GCN (0.7627). Crucially, Table B.1
reveals a counter-intuitive finding: removing the fixed
physical adjacency matrix from ST-GCN slightly im-
proves performance (0.7627 → 0.7665). This sug-
gests that predefined physical bones may constrain the
learning of latent social edges, empirically supporting
our choice of GAT to dynamically learn interaction
topologies.

• Loss Function (Critical Impact). When isolating
the loss component, Focal Loss (0.7246) significantly
outperforms the Baseline BCE (0.6556) and Standard
Cross-Entropy (0.6647). This confirms that dynam-
ically down-weighting easy background examples is

essential for learning rare social behaviors in highly
imbalanced streams.

• Fusion Strategy (Context Adaptation). Our fi-
nal optimization using FiLM yields our peak score
of 0.7702, showing a slight improvement over the
strong Concatenation baseline (0.7691). FiLM im-
poses a stronger inductive bias by modulating features
channel-wise, acting as a style transfer mechanism for
laboratory contexts.

• Post-Processing Strategies (Refinement). Finally,
we address inference consistency. (1) Smoothing:
We transitioned from EMA to a Median Filter (win-
dow=5), which effectively suppresses high-frequency
keypoint jitter without blurring rapid action onsets.
(2) Tie-Breaking: While explicit tie-breaking (Z-score:
0.7291) results in a marginal numerical drop compared
to multi-label predictions (None: 0.7315), it is a nec-
essary trade-off for biological validity, ensuring mu-
tually exclusive behavior labels and calibrating predic-
tion confidence across domains.

4.4. Comparison with Public Leaderboard

Our proposed model achieves a validation F1-score of
0.7702. We note that this score is significantly higher than
the public leaderboard top-1 score of 0.58.

However, this performance gap should be interpreted
with caution. Our validation set represents an intra-domain
split (held-out videos from the same laboratories seen dur-
ing training), whereas the official challenge test set likely
contains unseen domains (different laboratories or setups).
Therefore, the higher metric on our local split reflects the
model’s strong capacity to capture fine-grained social topol-
ogy within known environments.

Nevertheless, the substantial margin on the same valida-
tion split compared to our own baselines validates the ef-
fectiveness of the proposed Ego-GAT-SqueezeNet compo-
nents.

4.5. Key Takeaways

Our systematic experiments yield four actionable in-
sights for multi-agent behavior recognition:

1. Data engineering dominates architecture: The com-
bined impact of Action-Rich sampling (−28.7%),
Strong Features (−23.4%), and Egocentric alignment
(−22.7%) far outweighs any single model component,
confirming that bridging the semantic gap in raw coor-
dinates is foundational.

2. Focal loss is non-negotiable: For datasets with ex-
treme imbalance (> 75% background), dynamic
re-weighting of hard examples is essential, signifi-
cantly outperforming standard Cross-Entropy strate-
gies (+9.0% gain).
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3. Squeezeformer uniquely handles pose data: Its tem-
poral downsampling mechanism proves far superior to
CNNs (−27.3%) or WaveNets (−29.9%) for process-
ing the high redundancy in 30fps pose sequences.

4. Dynamic adaptation outperforms static con-
straints: Our results show that learning topology
from data (GAT) works better than fixed physical
graphs (ST-GCN), and explicit context modulation
(FiLM) further refines performance by adapting to
laboratory-specific distributions.

5. Conclusion
In this work, we presented Ego-GAT-SqueezeNet, a

specialized framework for multi-agent social behavior un-
derstanding. By synergizing an egocentric spatial rep-
resentation with a Graph Attention Network (GAT), our
model effectively captures the invariant geometric topology
of social interactions. Furthermore, the integration of the
Squeezeformer backbone addresses the unique challenge of
high-frame-rate pose data, allowing for the efficient pro-
cessing of long temporal windows necessary to distinguish
complex behaviors like chasing or investigation.

Our experiments on the MABe benchmark demonstrate
that strictly pose-based methods, when engineered with
domain-specific inductive biases (e.g., body graphs and
temporal squeezing), can achieve competitive performance
without the heavy computational cost of video-based mod-
els. We also highlighted the critical role of data sampling
strategies in mitigating extreme class imbalance.

Limitations and Future Work. Currently, our approach
relies solely on geometric features, which may miss subtle
cues present in visual textures (e.g., whisker movements).
Future work could explore a multi-modal fusion approach
that lightly integrates visual embeddings. Additionally,
applying self-supervised pre-training on the massive unla-
beled segments of the dataset could further improve robust-
ness on rare classes.
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Appendix A. Exploratory Data Analysis
To inform our architectural decisions and validate our

design choices, we conducted a comprehensive exploratory
data analysis on the MABe-2022 dataset. This analysis re-
vealed critical insights into the data distribution, spatial-
temporal characteristics, and the inherent challenges of
multi-agent behavior recognition.

A.1. Dataset Composition

The MABe-2022 training set comprises 8,789 video se-
quences collected from 21 independent laboratories, rep-
resenting diverse experimental setups, lighting conditions,
and tracking protocols. Our analysis identified signifi-
cant heterogeneity across laboratories: the top two sources
(MABe22 keypoints and MABe22 movies) account for
90.2% of the data, while the remaining 19 labs contribute
smaller, specialized datasets. This distribution presents a
domain adaptation challenge, as models must generalize
across substantially different data distributions.

Body part tracking configurations varied considerably
across laboratories. We identified 10 distinct keypoint
schemas, with the most common configuration (12 key-
points: body center, nose, ears, lateral points, tail seg-
ments) appearing in 90.2% of videos. However, two labora-
tories (GroovyShrew and LyricalHare) lacked critical key-
points such as neck and lateral body markers. To address
this heterogeneity, we developed a unified 7-point skeleton
mapping strategy with virtual keypoint generation, ensuring
consistent representation across all laboratories.

A.2. Behavior Class Distribution and Imbalance

We analyzed 76 distinct behavior classes spanning so-
cial interactions (e.g., sniff, attack, chase), individual main-
tenance (e.g., groom, rest), and locomotion patterns. Fig-
ure A.2 illustrates the severe class imbalance: unlabeled
background frames constitute 76.8% of the dataset, while
the top-3 classes (sniff, attack, sniffgenital) account for only
37.5% of labeled frames. Rare but scientifically critical be-
haviors such as mount, intromit, and dominancemount ap-
pear in fewer than 500 frames across the entire training set.

This extreme imbalance motivates our action-rich sam-
pling strategy and the adoption of focal loss over standard
cross-entropy, as uniformly sampled batches would over-
whelmingly consist of uninformative background frames.

A.3. Temporal Characteristics

Temporal analysis revealed substantial variation in ac-
tion durations across behavior types. As shown in Fig-
ure A.3, durations follow a log-normal distribution span-
ning three orders of magnitude: brief actions like sniff (me-
dian: 18 frames, 0.6s) contrast sharply with extended be-
haviors like chase or follow (median: 156 frames, 5.2s).

This heterogeneity necessitates a temporal architecture ca-
pable of capturing both rapid transitions and long-range
dependencies, directly motivating our choice of Squeeze-
former with its adaptive temporal receptive field.

A.4. Spatial Interaction Patterns

To justify our graph-based spatial encoder, we quantified
the spatial coupling between agents during different behav-
iors. Table A.1 presents inter-mouse distances for the four
most frequent social actions:

Table A.1: Spatial characteristics of social actions (mean ±
std, in pixels).

Action Inter-Mouse Distance Frame Count

chaseattack 325.4± 203.1 990
chase 333.0± 179.3 2,967
attack 367.5± 213.0 4,387
avoid 373.1± 153.3 3,504

Social actions consistently occur at significantly closer
distances than non-social behaviors (e.g., rest: >500px),
validating our hypothesis that spatial proximity is a discrim-
inative feature. Furthermore, proximity analysis showed
that 42.3% of all frames have inter-mouse distances be-
low 200 pixels, indicating frequent interaction opportuni-
ties that justify explicit relational modeling via graph neural
networks.

A.5. Egocentric Spatial Structure

We transformed tracking coordinates into an egocentric
reference frame where the agent mouse is positioned at the
origin and oriented along the positive y-axis. Figure A.4
visualizes kernel density estimates of target positions during
four representative social actions. Each behavior exhibits a
characteristic spatial signature:

• Sniff: Targets concentrate in a narrow frontal cone
(|θ| < 30), indicating nose-to-body contact.

• Chase: Targets distribute broadly in the forward hemi-
sphere with a bias toward straight-ahead pursuit.

• Attack: Targets cluster at medium distances (200-
400px) directly in front, reflecting confrontational po-
sitioning.

• Sniffgenital: Targets appear behind or to the side, con-
sistent with the stereotyped anogenital investigation
behavior.

These distinct spatial patterns demonstrate that egocen-
tric alignment not only achieves geometric invariance but
also amplifies behaviorally relevant spatial features, en-
abling the model to learn interpretable interaction topolo-
gies.
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(a) t=163.20s (b) t=163.93s (c) t=164.20s (d) t=164.40s (e) t=164.87s

Figure A.1: Qualitative visualization of a “chaseattack” sequence. The sequence illustrates the dynamic topology of an
aggressive interaction over a 1.6-second interval. (a-b) The agent (Mouse 2, orange) rapidly accelerates towards the target
(Mouse 4, green), reducing the inter-mouse distance significantly. (c-d) The interaction peaks with close-range contact,
characteristic of the low spatial distance distribution analyzed in Table A.1. (e) The target disengages, demonstrating the
rapid state transitions discussed in Section A.3.

Figure A.2: Class distribution showing extreme imbalance:
76.8% background frames dominate the dataset, while rare
social behaviors constitute less than 1% each. Log scale
emphasizes the long-tail distribution of 76 behavior classes.

Figure A.3: Distribution of action durations across behavior
classes. Violin plots reveal log-normal distributions span-
ning three orders of magnitude, from brief interactions (18
frames, 0.6s) to extended pursuits (156+ frames, 5.2s).

A.6. Kinematics and Motion Profiles

We computed frame-level velocity profiles (displace-
ment magnitude between consecutive frames) for agent
mice during different behaviors. Figure A.5 shows that ve-
locity distributions effectively separate behavior categories:

Figure A.4: Egocentric spatial heatmaps showing target
mouse positions relative to the agent (at origin, facing up-
ward) during four social actions. Each action exhibits a
distinct spatial signature: sniff concentrates targets in the
frontal zone, chase shows forward-biased pursuit patterns,
attack occurs at medium frontal distances, and chaseat-
tack combines chase dynamics with close-range aggression.
These structured patterns validate our egocentric transfor-
mation.

high-activity states like chase and run exhibit velocities 3-
5× higher than rest or huddle. This separation validates the
inclusion of kinematic features (velocity, acceleration, jerk)
in our feature engineering pipeline.

Figure A.5: Velocity distributions across behavior cate-
gories. High-activity states (chase, run) exhibit 3-5× higher
velocities than low-activity states (rest, huddle), validating
kinematic features as discriminative signals.
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A.7. Data Quality and Missing Values

Quality assessment revealed that the neck keypoint suf-
fers from 94.5% missing values in certain videos due to
occlusion or tracking failures. To mitigate this, we imple-
mented a robust preprocessing pipeline with cubic spline
interpolation for short gaps (<10 frames) and frame mask-
ing for extended occlusions. Additionally, we detected
64 frames (0.0025%) with anomalous velocities exceeding
50 pixels/frame, likely due to tracking errors or identity
switches, which we filtered during training.

A.8. Implications for Model Design

Our EDA directly informed multiple architectural deci-
sions:

1. Egocentric transformation: The structured spatial
patterns (Figure A.4) validate the use of agent-centered
coordinates to achieve geometric invariance and am-
plify interaction features.

2. Graph attention networks: The strong correlation
between spatial proximity and social actions (Ta-
ble A.1) justifies explicit graph-based modeling with
distance-weighted edges.

3. Squeezeformer: The wide range of action durations
(0.6s to 5.2s+) necessitates a temporal architecture
with adaptive receptive fields capable of capturing both
rapid transitions and long-range dependencies.

4. Action-rich sampling & focal loss: The extreme class
imbalance (76.8% background) requires specialized
training strategies to prevent the model from collaps-
ing to majority-class predictions.

In summary, our comprehensive EDA not only quantified
the challenges inherent in multi-agent behavior recognition
but also provided empirical justification for each component
of the Ego-GAT-SqueezeNet architecture.

10



Appendix B. Results

Table B.1: Component Impact Analysis (Relative to Baseline)

Component Variant F1 ∆ vs Baseline

Loss Function

BCE (Baseline) 0.6556 —
Focal 0.7246 +0.0690
CE 0.6647 +0.0091
OHEM 0.6219 -0.0337

Fusion (w/ Focal) FiLM 0.7702 —
Concat 0.7691 -0.0011

Tie-Breaking
None 0.7315 —
Argmax 0.7306 -0.0009
Z-score 0.7291 -0.0024

Temporal Model
Squeezeformer (Baseline) 0.6556 —
Multi-Scale CNN 0.4766 -0.1790
WaveNet 0.4598 -0.1958

Spatial Encoder
GAT (Strong Base) 0.7691 —
SpatialGNN 0.7674 -0.0017
ST-GCN 0.7627 -0.0064

Adjacency Matrix With (ST-GCN) 0.7627 —
Without 0.7665 +0.0038

Features Strong Features (Baseline) 0.6556 —
Basic Features 0.5024 -0.1532

View Egocentric (Baseline) 0.6556 —
Allocentric 0.5067 -0.1489

Sampling Action-Rich (Baseline) 0.6556 —
Uniform 0.4675 -0.1881
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Table B.2: Complete Ablation Study Results for Mouse Social Action Recognition

Loss Fusion Temporal Spatial Tie-Breaking Smoothing View Sampling Val F1

BCE Gated Squeezeformer GAT Hand-crafted EMA Egocentric Action-Rich 0.6556

Loss Function Improvements (Gated + Squeezeformer + GAT)

Focal Gated Squeezeformer GAT Hand-crafted EMA Egocentric Action-Rich 0.7246

Loss + Fusion Improvements (Squeezeformer + GAT)

Focal Concat Squeezeformer GAT Hand-crafted EMA Egocentric Action-Rich 0.7404
CE Concat Squeezeformer GAT Hand-crafted EMA Egocentric Action-Rich 0.6647
OHEM Concat Squeezeformer GAT Hand-crafted EMA Egocentric Action-Rich 0.6219

Tie-Breaking Ablations (Focal + Concat + Squeezeformer + GAT)

Focal Concat Squeezeformer GAT None EMA Egocentric Action-Rich 0.7315
Focal Concat Squeezeformer GAT Argmax EMA Egocentric Action-Rich 0.7306
Focal Concat Squeezeformer GAT Z-score EMA Egocentric Action-Rich 0.7291

Temporal Model Ablations

BCE Gated WaveNet GAT Hand-crafted EMA Egocentric Action-Rich 0.4598
Focal Concat Multi-Scale CNN GAT Hand-crafted EMA Egocentric Action-Rich 0.4766
Focal Concat WaveNet GAT Hand-crafted EMA Egocentric Action-Rich 0.4508

Spatial Encoder Ablations (Note: Run with stronger base config + TB-None)

Focal Concat Squeezeformer GAT None EMA Egocentric Action-Rich 0.7691
Focal Concat Squeezeformer SpatialGNN None EMA Egocentric Action-Rich 0.7674
Focal Concat Squeezeformer ST-GCN None EMA Egocentric Action-Rich 0.7627
Focal Concat Squeezeformer ST-GCN (No Adj) None EMA Egocentric Action-Rich 0.7665

Feature Engineering Ablations

BCE Gated Squeezeformer GAT Hand-crafted EMA Egocentric Action-Rich 0.5024

Data Processing Ablations

BCE Gated Squeezeformer GAT Hand-crafted EMA Allocentric Action-Rich 0.5067
BCE Gated Squeezeformer GAT Hand-crafted EMA Egocentric Uniform 0.4675

Ours (Final)

Focal FiLM Squeezeformer GAT None Median Filter Egocentric Action-Rich 0.7702
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